首页> 外文OA文献 >Development of a new comprehensive predictive modeling and control framework for multiple-input, multiple-output processes
【2h】

Development of a new comprehensive predictive modeling and control framework for multiple-input, multiple-output processes

机译:为多输入,多输出过程开发新的全面的预测建模和控制框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increase in the competitiveness of chemical process industries has necessitated the need for lowered energy and raw material consumption and improved quality control with tighter limits. This stronger control of the process conditions has generated interest in the use of advanced process control, and Model Predictive Control (MPC) is one such approach. The idea behind MPC is the use of a model to predict future behavior and use that knowledge to manipulate the input variables so that a cost function is minimized, resulting in optimal control. The predictive model is the core of the MPC method, and the success of a particular strategy hence depends on the accuracy of the model. The task of model building is also very challenging and time-consuming, so an ideal modeling approach would be one that does not require too much data but maintains its accuracy. The semi-empirical modeling approach has the strength that by using an intelligent model form, it has minimal data requirements. The use of semi-empirical models was first demonstrated by Rollins et al., and they coined the term SET (semi-empirical approach) for their method. The accuracy of SET over conventional empirical models was one of the biggest advantages of that approach. The ease of model identification, robustness in parameters, and a novel algorithm were some of the other strengths. Thus SET showed great potential for use in a multivariate situation, and the results of this work have shown that SET has been able to handle this challenge successfully. This extension led to the creation of a comprehensive modeling framework, which is far superior to the current modeling approach using the semi-empirical models. The various components of this approach are: use of statistical design of experiments, model identification, a novel model structure, and finally an algorithm that seeks to maximize accuracy.
机译:化工行业竞争能力的增强,需要降低能源和原材料的消耗,并在更严格的限制下改善质量控制。对过程条件的更强控制已经引起了对使用高级过程控制的兴趣,而模型预测控制(MPC)就是这样一种方法。 MPC背后的想法是使用模型来预测未来行为,并使用该知识来操纵输入变量,从而使成本函数最小化,从而实现最佳控制。预测模型是MPC方法的核心,因此,特定策略的成功取决于模型的准确性。建立模型的任务也非常艰巨且耗时,因此理想的建模方法是不需要太多数据但保持其准确性的方法。半经验建模方法的优势在于,通过使用智能模型形式,它具有最小的数据需求。半经验模型的使用首先由Rollins等人证明,他们为他们的方法创造了术语SET(半经验方法)。 SET相对于传统经验模型的准确性是该方法的最大优势之一。其他优点包括模型识别的简便性,参数的鲁棒性和新颖的算法。因此,SET显示出在多变量情况下使用的巨大潜力,这项工作的结果表明,SET已经能够成功应对这一挑战。此扩展导致创建了一个全面的建模框架,该框架远远优于使用半经验模型的当前建模方法。这种方法的各个组成部分包括:使用实验的统计设计,模型识别,新颖的模型结构,最后是寻求最大化准确性的算法。

著录项

  • 作者

    Bhandari, Nidhi;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号